Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and pericontusion.

نویسندگان

  • Gangadharappa Harish
  • Anita Mahadevan
  • Nupur Pruthi
  • Sreelakshmi K Sreenivasamurthy
  • Vinuth N Puttamallesh
  • Thottethodi Subrahmanya Keshava Prasad
  • Susarla Krishna Shankar
  • Muchukunte Mukunda Srinivas Bharath
چکیده

Traumatic brain injury (TBI) contributes to fatalities and neurological disabilities worldwide. While primary injury causes immediate damage, secondary events contribute to long-term neurological defects. Contusions (Ct) are primary injuries correlated with poor clinical prognosis, and can expand leading to delayed neurological deterioration. Pericontusion (PC) (penumbra), the region surrounding Ct, can also expand with edema, increased intracranial pressure, ischemia, and poor clinical outcome. Analysis of Ct and PC can therefore assist in understanding the pathobiology of TBI and its management. This study on human TBI brains noted extensive neuronal, astroglial and inflammatory changes, alterations in mitochondrial, synaptic and oxidative markers, and associated proteomic profile, with distinct differences in Ct and PC. While Ct displayed petechial hemorrhages, thrombosis, inflammation, neuronal pyknosis, and astrogliosis, PC revealed edema, vacuolation of neuropil, axonal loss, and dystrophic changes. Proteomic analysis demonstrated altered immune response, synaptic, and mitochondrial dysfunction, among others, in Ct, while PC displayed altered regulation of neurogenesis and cytoskeletal architecture, among others. TBI brains displayed oxidative damage, glutathione depletion, mitochondrial dysfunction, and loss of synaptic proteins, with these changes being more profound in Ct. We suggest that analysis of markers specific to Ct and PC may be valuable in the evaluation of TBI pathobiology and therapeutics. We have characterized the primary injury in human traumatic brain injury (TBI). Contusions (Ct) - the injury core displayed hemorrhages, inflammation, and astrogliosis, while the surrounding pericontusion (PC) revealed edema, vacuolation, microglial activation, axonal loss, and dystrophy. Proteomic analysis demonstrated altered immune response, synaptic and mitochondrial dysfunction in Ct, and altered regulation of neurogenesis and cytoskeletal architecture in PC. Ct displayed more oxidative damage, mitochondrial, and synaptic dysfunction compared to PC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Stem Cell Mobilized by Granulocyte-Colony Stimulating Factor and Human Umbilical Cord Matrix Stem Cell: Therapy of Traumatic Brain Injury in Rats

Objective(s) Clinical studies of treating traumatic brain injury (TBI) with autologous adult stem cells led us to examine the impression of a combination therapy. This was performed by intravenous injection of human umbilical cord matrix stem cell (hUCMSC-Wharton,s jelly stem cell) with bone marrow cell mobilized by granulocytecolony stimulating factor (G-CSF) in rats injured with cortical com...

متن کامل

Use of diffusion tensor imaging to assess the impact of normobaric hyperoxia within at-risk pericontusional tissue after traumatic brain injury

Ischemia and metabolic dysfunction remain important causes of neuronal loss after head injury, and we have shown that normobaric hyperoxia may rescue such metabolic compromise. This study examines the impact of hyperoxia within injured brain using diffusion tensor imaging (DTI). Fourteen patients underwent DTI at baseline and after 1 hour of 80% oxygen. Using the apparent diffusion coefficient ...

متن کامل

P108: Microglia in Traumatic Brain Injury

Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...

متن کامل

Protective Role of Hypothermia Against Heat Stress in Differentiated and Undifferentiated Human Neural Precursor Cells: A Differential Approach for the Treatment of Traumatic Brain Injury

Introduction: The present study aimed to explore protective mechanisms of hypothermia against mild cold and heat stress on highly proliferative homogeneous human Neural Precursor Cells (NPCs) derived from Subventricular Zone (SVZ) of human fetal brain.  Methods: CD133+ve enriched undifferentiated and differentiated human NPCs were exposed to heat stress at 42°C. Then, Western-blot qua...

متن کامل

P143: The Neuroprotective Effect of Chloroquine in Animal Model of Traumatic Brain Injury

Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality in young adults and children, and is a leading public health problem worldwide. In TBI, neurological impairment is caused by immediate brain tissue disruption (primary injury) and post‑injury cellular and molecular events (secondary injury) that exacerbate the primary neurological insult. However, the destructi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 134 1  شماره 

صفحات  -

تاریخ انتشار 2015